How to measure simmilarity of species distribution recorded by quadrat mapping?

Zbyněk Janoška

Quadrat mapping

- Mostly for species distribution
- Incidence = true / false
- Quadrant mapping ~ binary grid

Examples

Argynnis adippe
Argynnis niobe
Boloria euphrosyne

Cupido decolorata
Maculinea arion
Parnassius mnemosyne

Questions

- How similar are the distributions?
- In absolute terms?
- In shape?
- How big is the intersection?
- Similarity = Distance
- Generalization: How to compare binary grids?

Distance measures

- Binary distance measures
- Distance between descriptors of shape
- Earth Mover's Distance

Binary distance

- No spatial context
- Well documented
- Similarity in absolute terms

Location	Species X	Species Y
Loc 1	1	0
Loc 2	0	1
Loc 3	0	1
Loc 3	1	0
Loc 5	1	1
Loc 6	0	1

- Jaccard dist $=a /(a+b+c)$
- Sockal \& Michener = $(a+d) /(a+b+c+d)$

	$\mathrm{X}=1$	$\mathrm{X}=0$
$\mathrm{Y}=1$	$\mathrm{a}=1$	$b=3$
$\mathrm{Y}=0$	$c=2$	$\mathrm{d}=0$

Distance between descriptors of shape

- Descriptors of shape
= how clustered are data? (Moran Index)
= Is there dominant cluster? (Dominance)
$=$ Is the pattern dense or dispersed? (Density)
-••
- Descriptors of shape form table of values \rightarrow Classical Euclidean distance of standardized values
- Can evaluate similarity of patterns, but not necessarily spatialy overlapping patterns

Earth Mover's Distance

- "How much energy do we need to move a pile of soil?"
- Has spatial context, but must use standardized distributions (sum of valued equal for all)

Results

- Binary distance
- Measured only intersection, neighborhood does not matter
- Distance between similarity measures
- Similarity of shapes, but similar shapes can be non-overlapping
- Earth Mover's Distance
- Similarity in geographical context, but requires standardized distributions (biased, if the size of distribution is different)

