

INVESTMENTS IN EDUCATION DEVELOPMENT

Growing Neural Gas as Extension of Kohonen Map

J**i**ř Dvorský

Dept. of Geoinformatics Palacky Uviversity Olomouc

November 11th 2014

Jíř Dvorský (Dept. of Geoinformatics)

GNG as Extension of Kohonen Map

November 11th 2014 1 / 23

- Self Organizing Maps
- 2 Growing Neural Gas

3 Parallel GNG

э

- also known as Kohonen maps,
- proposed by Teuvo Kohonen in 1982,
- kind of artificial neural network, trained using unsupervised learning,
- the input space of training samples can be represented in a lower-dimensional (often two-dimensional) space, called *map*.
- efficient in structure visualization due to its feature of topological preservation using a neighborhood function.

- two layers of neurons,
- input layer that receives and transmits the input information,
- output layer, the map that represents the output characteristics,
- output layer is commonly organized as a two-dimensional rectangular grid of nodes – map.
- both layers are feed-forward connected, each neuron in the input layer is connected to each neuron in the output layer,
- a real number, or weight, is assigned to each of these connections.

Global view on SOM structure

- set of input vectors \vec{x} ,
- weight of connections (or neurons) \vec{w}_k ,
- crucial point is finding of the most similar neuron to selected input vectors, *Best Matching Unit* (BMU),
- weight adaptation of neighbours of BMU

SOM – Unified distance matrix

SOM – Connection graph

Some drawbacks

- fixed number of neurons, and
- fixed network structure.

Jiří Dvorský (Dept. of Geoinformatics)

GNG as Extension of Kohonen Map

November 11th 2014 8 / 23

- proposed by Fritzke in 1995,
- principle is an undirected graph which need not be continuous,
- generally, there are no restrictions on the topology,
- the graph is generated and continuously updated by competitive Hebbian Learning,
- new neurons are automatically added,
- connections between neurons are subject to time and can be removed.

3

→ < Ξ</p>

-

• • • • • • • •

- Initialization of network. Two neurons N₁ and N₂ are created, E = {e₁₂}. Weight vectors w₁(t) and w₂(t) are initialized to random values w_{kj}(t) ∈ [0, 1].
- Select arbitrary unused input data vector x.
- **③** Perform the one learning iteration according to the second algorithm.
- **9** Reduce error value e_i for all neurons N_i using factor β .
- Seturns to step 2, until all input data vector have been used.
- If t < T return to step 2.

Learning of GNG I

- Ind the Best Matching Unit (BMU) neurons N_{c1} and N_{c2}.
- **2** Update the local error e_{c_1} of neuron N_{c_1}

$$e_{c_1} = e_{c_1} + \|\vec{w}_{c_1} - \vec{x}\|^2 \tag{1}$$

• Update the weight vector \vec{w}_{c_1} of neuron N_{c_1}

$$\vec{w}_{c_1} = \vec{w}_{c_1} + \vec{l}_{c_1}(\vec{x} - \vec{w}_{c_1})$$
⁽²⁾

For all neurons N_k where exists edge e_{c1k} (N_{c1} neighborhood)
 Update the weights w_k using l_{nc1} learning factor

$$\vec{w}_k = \vec{w}_k + I_{nc_1}(\vec{x} - \vec{w}_k)$$
 (3)

2 Increase age a_{kc_1} of edge e_{c_1k}

$$a_{kc_1} = a_{kc_1} + 1$$
 (4)

12 / 23

Learning of GNG II

- If there is no edge between neurons N_{c_1} and N_{c_2} , then create such edge. If the edge exists, the age is set to 0.
- **(**) If any edge has reached the age of a_{max} , it is removed.
- If there is a neuron without connection to any edge, the neuron is then removed.
- If the number of processed input vectors in the current iteration has reached the whole multiple of the value γ and the maximum allowed number of output neurons is not reached, add a new neuron N_{N+1}. The location and error of the new neuron is determined by the following rules:
 - Found neuron $N_b(NBE)$ which has the biggest error e_b .
 - Found neuron N_c(NSE) among neighbors of neuron N_b and has the biggest error e_c among these neighbors.
 - **③** Create a new neuron N_{N+1} and the value of w_n is set as:

$$\vec{w}_{N+1} = \frac{1}{2} (\vec{w}_b + \vec{w}_c)$$
 (5)

- Oreating edges between neurons N_b and N_{N+1}, and also between neurons N_c and N_{N+1}.
- **5** Removed edge between neurons N_b and N_c .
- **(**) Reduction of error value in neurons N_b and N_c using the multiplying factor α . Error for neuron N_{N+1} is equal to the new error of neuron N_b .

Original condition

æ

Removal of edges between $N_3 a N_7$

Removal of edges between N_7 a $N_8,\, remove neuron \,\,N_7$

Added neuron N_{10} between N_5 a $N_3,$ addition of edges between N_2 a N_4

- use multicores computers, computer clusters etc.,
- identify the most time consuming part,
- finding of BMU is then most time consuming,
- the key factor is division of GNG into smaller pieces, parts,
- parts of GNG are assigned to one CPU in ideal case,
- division should keep uniform workload of the CPUs,
- each CPU find its local BMU, then communicate to each other to find global BMU.

Fundamental Clustering Problems Suite

Name	Cases	Number of Variables	Number of Clusters
Target	770	2	6
Lsun	400	2	3

Experimental hardware

- Windows HPC server 2008 with 2 computing nodes,
- each node had 8 processors with 12 GB of memory,
- total 16 CPUs were used.

Results of dataset Target

Results of dataset Lsun

- SOM and GNG
- parallel learning of GNG to speed-up learning process
- parallel GNG produces the same stracture of gas as serial version.

Thank you for your attention