









**OP Education** 

for Competitiveness

# MERIS observations of Lake Balaton phytoplankton dynamics

#### S.C.J. Palmer<sup>a,b</sup>, P.D. Hunter<sup>d</sup>, D. Odermatt<sup>c</sup>, T. Lankester<sup>e</sup>, S. Hubbard<sup>e</sup>, **H. Balzter<sup>b</sup>**, V. R. Tóth<sup>a</sup>

<sup>a</sup>Balaton Limnological Institute, Hungarian Academy of Sciences Centre for Ecological Research <sup>b</sup>Centre for Landscape and Climate Research & Department of Geography, University of Leicester <sup>c</sup>Brockmann Consults <sup>d</sup>Biological and Environmental Sciences, University of Stirling

eAirbus Defence and Space, UK









# Lake Balaton, Hungary

- Large, ~ 600 km<sup>2</sup> surface area
- Severe eutrophication historically, annual blooms
- Trophic gradient, spatially
- Optically complex
- Ongoing monitoring















## Chl-a retrieval validation

#### Artificial Neural Network:

- Case 2 Regional
- Eutrophic Lake
- Boreal Lake
- FUB/WeW

Image radiance and geometry input

Reflectances, IOPs and concentrations output

Atmospheric & constituent retrieval components

Different in situ calibration conditions

#### Semi-empirical/band ratio:

- Maximum Chlorophyll Index
- Fluorescence Line Height

Make use of peak at 685 / 709 nm

Best performance using L1b data











## Chl-a retrieval validation

- 1409 full or partial MERIS overpasses (2007-2012)
- 679 in situ chl-a measurements (2007-2012)
- 289 in situ chl-a / clear MERIS matchup points
  - $1.5 57 \text{ mg m}^{-3}$



PHAVEOS processing chain.









# Chl-a retrieval validation of a second secon

- Extremely variable algorithm performance
- Neural networks greatly underestimating high chl-a
- Semi-empirical perform well
- FLH performs best











## Chl-a validation













# Phytoplankton phenology

- Seasonal timing and related features of phytoplankton blooms, such as bloom start & end timing, length, rates of biomass increase & decrease, peak biomass concentrations, number of annual bloom events, etc.
- Has been found to be sensitive to climate change and nutrient loading
- Important for trophic level interactions
- Phenology of terrestrial vegetation and increasingly the pelagic ocean is commonly assessed using RS; this is underexploited for inland waters









# Lake phenology from space

- TIMESAT software (Jönsson and Eklundh, 2004)
- Time-series of chlorophyll-a concentration maps
- Smoothed time-series for each pixel
- Metrics extracted for each smoothed time series and mapped

















## Extracted chl-a time-series







Time











Time









Time













### Conclusions

- Phenology metrics are important ecological indicators; their mapping using EO has been demonstrated for Lake Balaton, Hungary
- A cohesive spatial component is added to phenology analysis & temporal dimension of satellite imagery is taken advantage of in a quantitative manner
- Both spatial and temporal variability of all phenology metrics considered, and of bloom extent, has been revealed









Outlook

- Application to other lakes!
- Robust chl-a product as input is crucial; error will propagate into phenology analysis
- Optimal definition of bloom events ("start" & "end") may vary from lake to lake, and at sub-lake scales, and is to be considered
- Work on climate (temperature) and nutrient drivers of spatial and temporal variability of EO-mapped phenology metrics is underway for Balaton
- Cyanobacteria phenology mapping may be possible. Again, robust retrieval algorithms for input maps are the bottom line









### Publications

 Palmer, S.C.J., Hunter, P.D., Lankester, T., Hubbard, S., Spyrakos, E., Tyler, A., Présing, M., Horváth, H., Lamb, A., Balzter, H. and Tóth, V.R. (2014, in press): Validation of Envisat MERIS- and Sentinel-3 OLCI-compatible algorithms for chlorophyll retrieval in a large, turbid and optically complex shallow lake. *Remote Sensing of Environment*, http://www.sciencedirect.com/science/article/pii/S0034425714002739

http://www.sciencedirect.com/science/article/pii/S0034425714002739

 Palmer, S.C.J., Pelevin, V.V., Goncharenko, I., Kovács, A.W., Zlinszky, A., Présing, M., Horváth, H., Nicolás-Perea, V., Balzter, H. and Tóth, V.R. (2013): Ultraviolet Fluorescence LiDAR (UFL) as a robust measurement tool for water quality parameters in turbid lake conditions, *Remote Sensing* 5, 4405-4422

http://hdl.handle.net/2381/28884



## Thank you!







#### Questions?

#### stephanie.palmer@okologia.mta.hu









